Particle Clogging in Radial Flow: Microscale Mechanisms

نویسنده

  • Julio R. Valdes
چکیده

Fluid-flow-driven particle migration through porous networks reflects the interplay between various particle-level forces, the relative size between migrating particles and pore constrictions, and the spatial variability of the velocity field. Experimental evidence shows that particle migration in radial fluid flow results in selfstabilizing annular clogging patterns when the particle size approaches the constriction size. Conversely, flow localization and flushing instability are observed when the particle size is significantly smaller than the pore-throat size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition-state theory predicts clogging at the microscale

Clogging is one of the main failure mechanisms encountered in industrial processes such as membrane filtration. Our understanding of the factors that govern the build-up of fouling layers and the emergence of clogs is largely incomplete, so that prevention of clogging remains an immense and costly challenge. In this paper we use a microfluidic model combined with quantitative real-time imaging ...

متن کامل

Comparison of Fine Particle Clogging in Soil and Geotextile Filters

This paper addresses the differences in the extent of clogging associated with fine particle transport in soils and geotextiles. A common experimental set-up was designed for soil and geotextile filtration. Tests were conducted using a nonwoven, needle-punched geotextile filter sample permeated with fine particle suspensions under constant flow rate. The results were compared with those from si...

متن کامل

Ouverte ( OATAO )

Prediction of pore fouling by microparticles is still challenging and remains a difficult step to optimize membrane and filtration processes. The scientific issue consists in determining the relevant operation parameters controlling the capture of particles and the clogging of the filter. In this study, we have developed for a dead-end and cross-flow filtration a poly-dimethylsiloxane (PDMS) de...

متن کامل

Experimental investigation of pore clogging by microparticles: Evidence for a critical flux density of particle yielding arches and deposits

Prediction of pore fouling by microparticles is still challenging and remains a difficult step to optimize membrane and filtration processes. The scientific issue consists in determining the relevant operation parameters controlling the capture of particles and the clogging of the filter. In this study, we have developed for a dead-end and cross-flow filtration a poly-dimethylsiloxane (PDMS) de...

متن کامل

Mechanism for clogging of microchannels.

We investigate clogging of microchannels at the single-pore level using microfluidic devices as model porous media. The process of clogging is studied at low volume fractions and high flow rates, a technologically important regime. We show that clogging is independent of particle flow rate and volume fraction, indicating that collective effects do not play an important role. Instead, the averag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006